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Abstract—Raw audio generation is a challange which has been
accomplished by using deep learning approaches in recent years.
These methods have been used in a broader scope for speech
synthesis or music generation and as a result use architectures
that require a lot of data and resources to train. In this paper,
we focus on generating a specific type of signals like impulse
responses using a simple architecture and discuss methods to
improve its performance.

I. INTRODUCTION

Recurrent Neural Networks (RNN), are a type of artificial
neural networks that can model sequences of data. Unlike
linear feed forward networks which assume that all inputs
are independent of each other, RNNs use the output from
previous step as input in the current step to influence its
prediction. This is useful for learning temporal sequences. A
traditional RNN however is not able to model very long term
dependencies. Long Short Term Memory networks (LSTM)
solve this problem by carefully managing its memory by
making decisions as to what should be remembered and what
should be forgotten. As a result, LSTMs have been greatly
used for modelling temporal data. Generation of raw audio is
useful in tasks like speech synthesis, music generation, audio
effects etc. Training neural networks to generate raw audio is
not a trivial task. Often times the approach depends on the
type of signals that one is trying to model.

In this paper, we take a look at some techniques like
truncated backpropogation through time, teacher forcing and
auxiliary loss that can be used when trying to model raw audio.
We test the network’s capability to model impulse responses
and sine waves.

II. MOTIVATION

The motivation behind this project was to teach RNNs
to generate room impulse responses. Impulse responses can
capture the reverberant properties of a linear time invariant
system such as a room. Such impulse responses can be used
to recreate the reverberation of a room by convolving it with
an input signal. This technique is used by a lot of reverb audio
effect plugins which use a library of pre-recorded impulse
responses. Compiling such libraries require one to play an
impulse in a target space and record the response that it
generates. However, there are some problems with this: One

needs to be physically present at that place to record the
response. There needs to be complete silence to record a
clean response. This may not always be possible in public
places. Furthermore, for quality recording, one will require
good equipment.

But, if we were able to generate an impulse response which
based on some parameters, we would be able to bypass this
arduous process. One could also imagine a reality where
a picture of a room could be used as an input parameter
to generate an impulse response which would mimic the
reverberation properties of that room. Theoretically, it is
possible for an ideal neural network to do such conditional
modelling. But we are getting way ahead of ourselves since
the first step here is to be able to reliably generate raw audio.
We experimented with different types of techniques trying
to teach our model to learn to generate an impulse response
but failed. But in the process, we did observe how these
techniques affect the learning which we have discussed in
this paper.

III. RELATED WORK

For learning temporal dependencies using machine learning
many approaches have been proposed. Of these the most well
known are Long Short Term Memory networks [1] and Gated
Recurrent Unit networks [2] which improve gradient flow
in RNNs. There are various techniques that can be used to
improve performance of vanilla RNNs like gradient clipping
[3] which avoids explosion of gradients. For backpropogation
through time (BPTT) to work, RNNs need to store the
hidden states at each timestep. This increases the memory
requirements. A method to store the hidden states periodically
is proposed in [4]. Using truncated backpropogation [5] is
another technique that can be used which we will discuss in
detail in this paper. Sampled scheduling [6] and teacher forcing
[7] are techniques that help the network to learn better.

For audio generation, WaveNet [8], is a well known genera-
tive model. It uses the concept of dialated convolutions which
is based on PixelCNN [9]. Generative Adversarial Networks
(GANs) like WaveGAN [10] an adaptation of WaveNet using
GAN by Donahue et al. or GANSynth by Engel et al. are
some models which generate raw audio. RNN based approach



SampleRNN generates raw audio data sample-by-sample as a
q-way discrete distribution over possible quantized values of
the audio [11].

IV. APPROACH

A. Experiments

The aim of our experiments is to test the capability of the
network to model the data, which is why we try to overfit the
network on a single audio signal. If the network is not able to
model a single signal and generate similar output then we can
conclude that the network might not be capable of modelling
and generalizing over a larger dataset of the same type. Using
combinations of techniques like full sequence backpropogation
through time (BPTT), truncated BPTT, teacher forcing, and
auxiliary loss we conduct the following experiments:

1) Full Sequence BPTT without Teacher Forcing.
2) Full Sequence BPTT with Teacher Forcing.
3) Truncated BPTT with Teacher Forcing.
4) Auxiliary Loss with Teacher Forcing.
5) Signal Generation.
In the first four experiments we compare the predictions

of the network and in the last experiment we compare it’s
generations. Note that ’prediction’ refers to the output of
network during training which may or may not be aided by
teacher forcing. ’Generation’ on the other hand is the output
of a trained network by using only a seed sample as input’.

In the last experiment we compare the generation output of
the network. We see how teacher forcing affects learning and
how the generation is affected since there is no teacher forced
guidance for the network.

B. Data

We use two main types of signals for conducting the
experiments: impulse responses and sine waves. Sine waves
serve as a simpler signal that the network can learn because
they are periodic and have a constant maximum amplitude.
Impulse responses on the other hand are more noisy and have
a characteristic amplitude envelope which decays down over
time. We use a 0.5 sec long impulse response (IR) recorded
in a bedroom at a sampling rate (Fs) of 44100Hz. The IR is
downsampled to Fs=1024, 5512 depending on the experiment.
We use a sine wave of 440Hz sampled at Fs=44100. For most
experiments the number of samples (n) is 1024.

C. Network

For all experiments except auxiliary loss, we use the main
network. The auxiliary network is used along with the main
network only in the auxiliary loss experiments.

1) Main network: We use a one layer LSTM with input
size of 1 and a hidden size of 64. This is followed by a
fully connected linear layer of input size 64 and output size
of 1. The hidden state for the main network is randomly
initializedWe use tanh as the activation function. The raw
audio samples are provided to the network as input. for every
input sample at timestep t of original signal, a corresponding

sample of timestep t+1 is provided as the target. The loss is
calculated by taking the mean squared error (MSE) between
the predicted sequence and the target sequence. We use
a batch size of 64 and a learning rate of 0.001 in most
experiments with ’Adam’ as the optimizer. When using
truncated backpropogation, we use subsequence lengths of
16, 64, 128, 512, 1024.

2) Auxiliary network: For auxiliary loss implementation we
follow the approach used by Trinh et. al. [12] We use the
reconstruction loss as the auxiliary loss in our approach.

To calculate the auxiliary loss, we select random anchor
points in the sequence and try to predict a segment of the
input sequence of a certain length preceding the anchor point.
So for each anchor point that we select we get a loss over its
corresponding segment. All such losses are added and divided
by combined length of segments to get the auxiliary loss. The

auxiliary loss can be described by: Laux =

∑n

i=1
Li∑n

i=1
li

where,

n = number of anchor points, Li = loss for ith segment
and li = length of ith segment. The training is done in two
phases: Pre-Training and Joint-Training. In pre-training, only
the auxiliary loss is minimized. In joint training phase, the
joint loss is minimized where Ljoint = Lmain + Laux.

The auxiliary network consists of two LSTM layers stacked
on each other. The input size is 1 and hidden size is 16. This
is followed by a linear layer with input size 16 and output
size 1. For each anchor point the hidden state of the first
layer of auxiliary network is initialized to the hidden state
of the main network at the anchor point. The hidden state
of the second layer of auxiliary network is initialized by zeros.

.
Fig. 1: Reconstruction Auxiliary loss for a Segment [12]

V. EXPERIMENTS AND RESULTS

A. Full Sequence BPTT without Teacher Forcing

In this experiment we try to overfit the LSTM on a sine
wave and an impulse response (IR) using the main network.
The sine wave is of 440Hz and has 1024 samples. The IR is
sampled at Fs=1024. We provide the network a starting seed
sample with a value of 0 as the input. The output generated
by the network for this seed is used as the input in the next
timestep. We do this we get a sequence of length equal to



the target signal length. The backprop is done only after the
complete sequence has been predicted. For the sine wave, we
use a signal of length 1024 samples. The training is done for
100 epochs. While training on the sine wave we could see that
the network kept on producing a constant value after producing
faulty values for initial timesteps which can be seen from Fig.
2. A similar behaviour was observed for the impulse response
too.

(a) Target and Prediction for Sine wave (440Hz,
Fs=44100, n=1024) (epochs=100)

(b) Target and Prediction for IR (Fs=1024Hz n=512)
(epochs=100)

Fig. 2: Results for experiment 1: Full Sequence BPTT without
Teacher Forcing

The reason for such results is that this method of training
is not ideal. There is a cold start problem. At the beginning
of training the network has no idea what kind of data it has
to produce so the values it produces are not going to match
the target. Since we use this faulty prediction as the input for
next time step, the network tries to predict the target value
based on an incorrect input. The error between the target and
prediction for next timesteps is not going to be representative
of the what is should be if the correct input was provided and
so the network will keep trying to minimize an incorrectly
representated loss. This means that the network starts to learn
a faulty representation. It is possible that during optimization
the network may get stuck in a local minima and never learn
the actual mappings from input to target. It is also possible
that the network may eventually get it right but it may take a
long time.

B. Full Sequence BPTT with Teacher Forcing

A solution to the problem we discussed in the last section
is Teacher Forcing [7]. Teacher forcing is when you provide
the ground truth as the input instead of the network’s own
prediction. In this experiment too, we try to overfit the
LSTM on a sine wave and an impulse response using the
main network. The data used is a sine wave of 440 Hz,
1024 samples, Fs=4410 and an impulse response sampled at
fs=1024 and at Fs=5512 (8x downsampled). The network is

trained for 100 epochs and Teacher forcing is done for all
the epochs. The predictions for this experiment can be seen
in Fig. 3

(a) Target and Prediction for Sine wave (440Hz,
Fs=44100, n=1024) (epochs=100)

(b) Target and Prediction for IR (Fs=1024Hz n=512)
(epochs=100)

Fig. 3: Results for experiment 2: Full Sequence BPTT with
Teacher Forcing

The network was able to model a sine wave with a MSE
8.52e-4. The impulse response prediction has a MSE of 5.13E-
03. While this is not ideal it is a remarkable improvement over
No Teacher forcing. This is because the network was provided
the ground truth as the input. It should be noted that with
teacher forcing, the network does not see the data generated
by itself so it may not perform as well when it starts to predict
based on it’s own output.

The above result for the IR is for 100 epochs when the
network had not completely converged. We ran trained the
same IR for 500 epochs and got a MSE of 9.882E-04. Training
for more epochs proportionally increases the time required
to train. 100 epochs took 3 min 22sec to train and 500
epochs took 15 min 33 sec. Note that we are using a highly
downsampled version of the impulse response (Fs=1024,
n=512) which is not usable in real world scenario. If we were
to use an IR at a higher sample rate, the number of samples
in the sequence would increase. For our current IR the
sequence length would become n=2755 samples for Fs=5512
(8x downsampled). Since we are doing a backprop after the
whole sequences has been predicted, the computational graph
gets very big. Thus the backprop takes longer time. This also
increases the memory requirements. Table I shows the MSE
and time performance of the network for impulse responses
at Fs=1024, 44100 and training epochs=100,500

C. Truncated BPTT with Teacher Forcing

As we saw in the previous experiment, larger size of
sequences increase the memory and time required for training.



Sample Rate(Hz) Epochs Loss Time
1024 100 5.13e-03 3 min 22sec

500 9.882e-04 15 min 33 sec
5512 100 4.183e-03 11 min 9 sec

500 3.551e-03 1hr 6min 12sec

TABLE I: Network performance for impulse response predic-
tion for varying sequence lengths and epochs

In order to speed up the process we can use a technique
called Truncated BPTT [5] In Truncated BPTT, in stead of one
long backprop, we perform multiple backprops over small sub-
sequences. To maintain context between the sub-sequences, we
preserve the values of the cell state and hidden state when re-
initializing them for each subsequence. If this is not done, one
may see artefacts in the prediction like sudden bursts of high
values at the beginning of every sub-sequence. These artefacts
occur because the continuity gets broken if the hidden and cell
state values are reset. Fig 4 shows such artefacts. The cell state
and hidden state are reset (without copying previous values)
only for a new sequence (at the start of a new signal).

Fig. 4: Artefacts due to resetting hidden state between sub-
sequences

In this experiment, we use Truncated BPTT and mea-
sure network performance for modelling an impulse response
(Fs=1024, 5512). We test it for various sub-sequence lengths.
In all cases, the number of epochs is 100. The results can be
seen in table II

Sample Rate(Hz) Sub-sequence Length Loss Time
1024 16 1.601e-03 3 min 44sec

64 1.111e-03 3 min 12 sec
128 2.074e-03 3 min 07 sec
512 5.131e-03 3 min 14 sec

5512 128 2.299e-03 10 min 18 sec
512 3.386e-03 16 min 53 sec

1024 4.405e-03 17 min 11 sec
2756 6.036e-03 21 min 14 sec

TABLE II: Truncated BPTT Network performance for impulse
response prediction for varying sub-sequence length

We can infer from the results that lower sub-sequence sizes
are better for performance. For both Fs=1024 as Fs=5512, the
loss reduces as the sub-sequence size reduces. This happens
because the number of backprops for lower sub-sequence
sizes increases. Also the network retains information better
over smaller distances. For Fs=1024, the difference time
performance is not a lot. This could be because the total

sequence length is very low (n=512). This difference is more
pronounced in the results for Fs=5512. A comparison between
full sequence backprop and Truncated backprop predictions
can be seen in Fig. 5

(a) Full Sequence Backprop (fs=1024, epochs=100)
MSE=5.13E-03

(b) Truncated Backprop (fs=1024, epochs=100, sub-
sequence length=64) MSE=1.111E-03

Fig. 5: Comparison of Full Sequence BPTT and Truncated
BPTT predictions.

D. Auxiliary Loss

The idea behind Auxiliary loss [12] is to help the network
strengthen its memory for very long sequences. The anchors
serve as points in the sequence where the network’s retention
ability is improved by adding an extra (auxiliary) loss. We
conduct this experiment for impulse response with Fs=5512
and a sine wave (440Hz, Fs=44100, n=4096). Number of
anchor points is set to 1 and for each batch the anchor point is
chosen randomly. The segment length used is 128. We use full
sequence BPTT in all cases. Pre-training and joint training was
done for was done for 100 epochs each. From the predictions
in fig 7 we can see that the segment prediction of auxiliary
network for an impulse response is terrible. A possible reason
for this could be the way we initialize the hidden state of the
auxiliary network. As discussed in section IV-C2, we initialize
the first layer’s hidden state with the values of hidden state
from main network but the second layer is initialized with
zeros. Because of the zero initialization in second layer the
network might perceive this as the start of a new sequence
(IR), which explains why it produces is a high value at the
start of the sub sequence. Because of this the auxiliary network
contributes very less to the prediction from main network.

For sine waves the auxiliary network is able to model the
segment.(Fig 6) The predictions however don’t have higher
values. This is because the network has not converged even
after 100 epochs of pretraining and 100 epochs of joint
training. Since we are adding another loss it is expected
that the network will take more time to learn compared to



only using the main network. This can be seen from the loss
curves in fig. 8

(a) Auxiliary network prediction (segment length = 128)

(b) Main network prediction

Fig. 6: Auxiliary Loss results for Sine waves

(a) Auxiliary network prediction (segment length = 128)

(b) Main network prediction

Fig. 7: Auxiliary Loss results for Impulse response (Fs=5512)

E. Signal generation

In the above experiments we saw how different training
techniques affect predictions. How ever note that all of these
predictions are due to teacher forced input. If we use these
trained models and then start generating sequences by pro-
viding only a starting seed, then the generations might not
be as good as the prediction since there is no reference for
teacher forcing. This happens because the network has not
learned to produce data based on it’s own generation. There are
techniques like teacher forcing annealing which help in facing
these problems. In Teacher forcing annealing, the frequency of
teacher forcing is reduced slowly as the number of backprop
steps increases. Fig 9 shows the generation output for sine
wave (440Hz) and impulse response (Fs=1024). We can see
that the generated sine wave signal is also a sine wave which
means that the network is capable of modelling such signals.
The generated IR however is very small, only about 200
samples long. This could be explained by the fact that sine

(a) Loss curve when using Auxiliary loss

(b) Loss curve for Full sequence BPTT

Fig. 8: Loss curve comparison for Auxiliary loss method v/s
only main network

wave being a simple periodic signal is easier to learn whereas
an impulse response is more noise like. This makes it hard for
the network to learn an impulse response.

(a) Single seeded generation for Sine wave. Trained with
Full sequence BPTT with Teacher Forcing.

(b) Single seeded generation for IR. Trained with Trun-
cated BPTT (subseq=512) with Teacher Forcing.

Fig. 9: Generations for IR and Sine wave

To investigate this speculation we used a recording of
vibraphone C6 note. A vibraphone note is a periodic signal
whose amplitude decays like an IR. The network was trained
with Truncated BPTT (subseq=512) with Teacher Forcing.
Training was done for 100 epochs. The MSE for prediction
was 6.2154e-05. In this case, the generated signal was very
similar to the prediction with a MSE of 5.576e-03 Fig 10
shows the prediction and the generation for the vibraphone
note signal. The network was able to generate a long sequence
in this case unlike in an Impulse response. This could mean
that the network can learn signals which are smoother rather
than noise like. However, more tests need to be done to verify
this speculation.



(a) Target and prediction for Vibraphone note

(b) Generation for Vibraphone note

Fig. 10: Generations for IR and Sine wave

VI. SUMMARY

We saw how different techniques affect the learning
process. We saw how to optimize the performance of an
LSTM using Truncated backpropogation. We saw how to
use auxiliary loss. Although it didn’t prove to be useful in
our experiment, more testing needs to be done with varying
number of anchor points, segment lengths etc. We saw how
teacher forcing helps in learning and how the network suffers
during generation when there is no teacher forcing. We saw
that the network was able to generate simpler signals like
vibraphone audio but not an impulse response. It is possible
that LSTMs are not suitable for raw audio generation of
an impulse response. Alternatives could be generation in
the frequency domain like using spectrograms. Another
alternative is to generate the audio features that enable you
to generate an IR.

REFERENCES

[1] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.
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